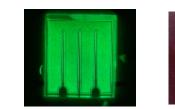
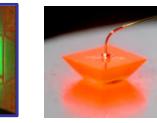
LUMILEDS

LIGHT FROM SILICON VALLEY

High Power White LED Technology for Solid State Lighting


Paul S. Martin

J. Bhat, C.-H. Chen, D. Collins, W. Goetz, R. Khare, A. Kim, M. Krames, C. Lowery, M. Ludowise, G. Mueller, R. Mueller-Mach, S. Rudaz, D. Steigerwald, S. Stockman, S. Subramanya, S-C Tan, J. Thompson, T. Trottier


Copyright (c) Lumileds Lighting LLC Company Confidential

Who is Lumileds

- Fully integrated light source supplier that co-develops optimized system solutions!
 - LED dice

- Luxeonä Power Light Sources
 - Arrays of High Flux LEDs on a metal core PCB

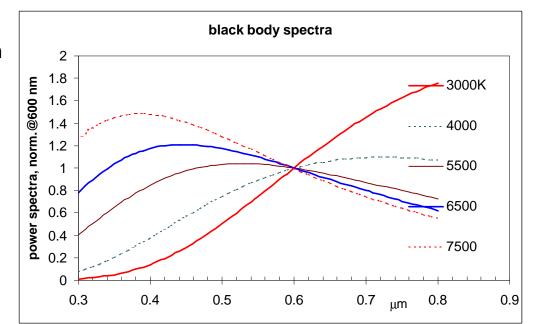
Automotive, Traffic Signals, Signage & Contour Solutions

Copyright (c) Lumileds Lighting LLC Company

LUMILEDS

Outline

- Competition in the market for Illumination, Incandescent & Fluorescent Bulbs.
- LED Metrics
- Options for making white light from LEDs
- Lumileds power white LED performance
- Some interesting demos

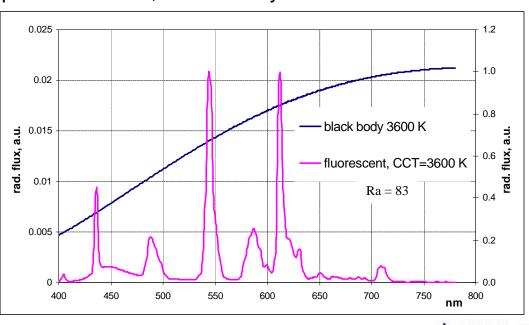

How Much Energy is Used for Lighting

- In 1999 the US used 3 Trillion kWhr of Electricity!
- 20% or 600 Billion kWhr of Electicity generated was used in Lighting!
- Incandescent/Hal. lamps burn 40% of electricity to produce 15% of light!
- Fluorescent/HID lamps use 60% to produce 85% of light!
- Illumination market is \$60Billion/yr and growing slowly, ~2%/yr

Incandescent Bulbs

- Incandescent = hot light, emitted from a (tungsten) filament at around 2800°K
 - Disadvantages:
 - mostly infra-red
 - glass vacuum envelope & filament both break easily
 - <15 lm/W luminous (<5% power) efficiency
 - fire hazard, burnt fingers, maintenance
 - Advantages:
 - Radiant cooling
 - Cheap 0.0005\$/lumen
 - klm per package!

Basic disadvantage: no chance to come close to DAYLIGHT = 6500°K


Courtesy Gerd Mueller LL

Fluorescent Bulbs

• Fluorescent = cold light, emitted by phosphors excited by gas discharge.

- Advantages:
 - High efficiency 80+lm/W & High Flux klm/lamp
 - Moderate cost for large lamps 0.002\$/Im
- Disadvantages:
 - Lifetime short <10,000 hrs resulting in high maintenance.
 - Glass vacuum envelope leaks/breaks, ballast noisy.
 - Mercury!!

Basic Advantage: any color temperature possible by tri-color mixing

Courtesy Gerd Mueller LL

Assumptions for using LEDs in lighting

- LED lamps will be far more expensive than incandescent, halogen or fluorescent lamps for at least a decade.
- The expensive LED lamp must pay for itself through lifetime energy and maintenance savings.
- The lighting industry has spoiled the users with superb color rendering and color control.
- Near term LEDs must dominate monochrome and penetrate white niches!

Outline

- Competition in the market for Illumination, Incandescent & Fluorescent Bulbs.
- LED Technology & metrics
- Options for making white light from LEDs
- Lumileds power white LED performance
- Some interesting demos

LED Metrics

Tower of Babble?

optical power out / electric power in = Wall-Plug-Efficiency, <u>WPE</u>, (%,W/W) photons out / electrons in = External Quantum Efficiency, <u>EQE</u>, % photons internally generated / electrons in = Internal Quantum Efficiency, IQE, % photons out / photons generated = extraction efficiency, %, <u>**h**_{ext} photon energy / applied voltage (times electron charge) = electrical efficiency, %, <u>**h**</u>_{el} lumens out / electric power in = luminous efficiency [<u>**Im**/W</u>]</u>

luminous efficacy, \underline{LE} [lm/W] = luminous equivalent of the emission spectrum

luminous efficiency = IQE* η_{ext} * η_{el} *LE $IQE*\eta_{ext} = EQE$ $EQE*\eta_{el} = WPE$ WPE*LE = lm/W

LUMILEDS

LED Metrics

LED Skulduggery

"A Devious device or trick!"

Paul's Top 5 Sins

1) Quoting EQE without Vf or WPE

2) Quoting low duty factor results

3) Quoting WPE without current or current density & total power out.

4) Quoting WPE without temperature

5) Quoting Cd without Flux

What am I hiding?

1) Vf, power efficiency

2) Thermal resistance, heating

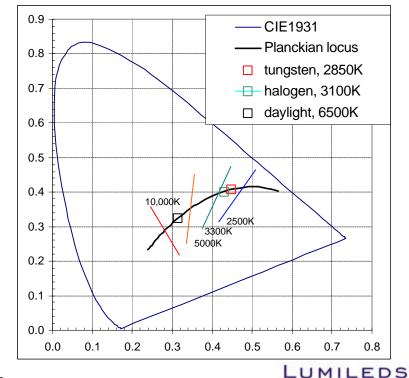
3) GaN in particular has strong dependence of WPE on current not much light comes out of a device at very low currents!

4) WPE is strongly dependent on junction temperature for AlInGaP, less so for AlInGaN.

5) Radiation pattern

LED Metrics

Tower of Babble take 2 for white LEDs

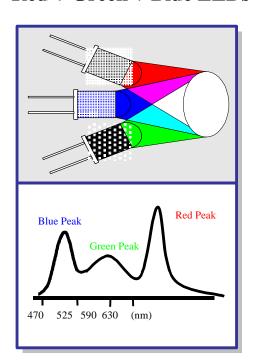

How well can a source reproduce "natural" colors = Color-Rendering-Index, <u>Ra</u>, % (100 = sunlight, 85 = office, 60 = cabinet/lantern light)

Color Correlated Temperature = CCT, Kelvin (x,y coordinates normal to black body curve)

Phosphor Converted LED = PCLED

LED photons pump phosphor which emits secondary, and longer, wavelength of light.

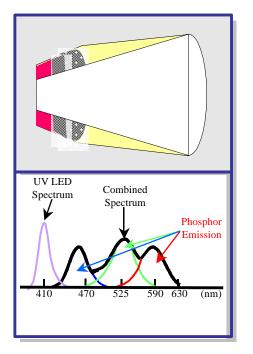
Stoke's shift = Difference in wavelength between absorbed and emitted photons. Emitted photons always have longer wavelength, i.e. lower energy!

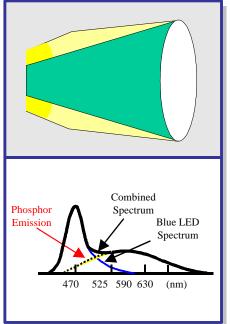

Outline

- Competition in the market for Illumination, Incandescent & Fluorescent Bulbs.
- LED Technology & metrics
- Options for making white light from LEDs
- Lumileds power white LED performance
- Some interesting demos

White Light from LEDs

Three methods of Generating LED White Light

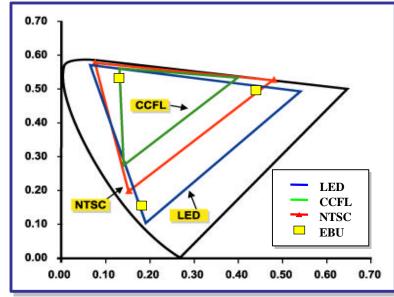

Each method has potential strengths!


Red + **Green** + **Blue LEDs**

RGB LEDs

Blue LED Yellow phosphor LUMILEDS

White Light from LEDs

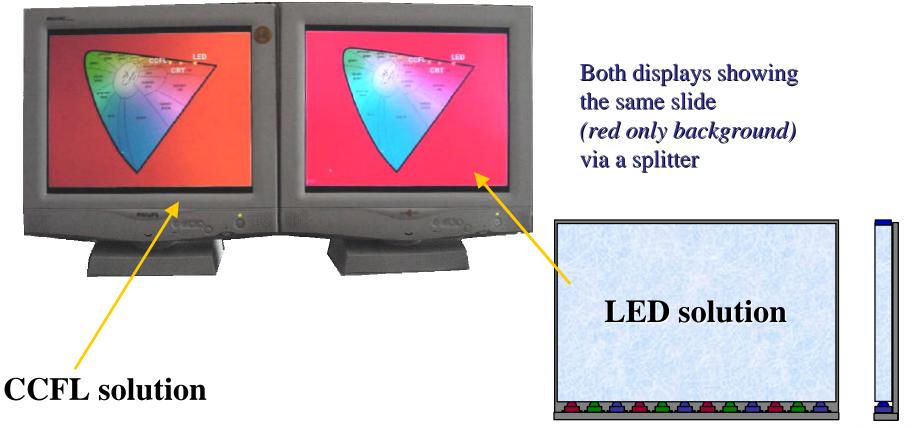

Combining Red, Green and Blue LEDs

• Advantages:

- Long term likely the most efficient!
- Dynamic tuning of color temperature possible!
- Excellent color rendering!
- Very large color Gamut available!

Challenges

- Color Feedback required today to account for LED degradation with T & t!
- Color mixing tricky!
- Yellow-Green Gap!

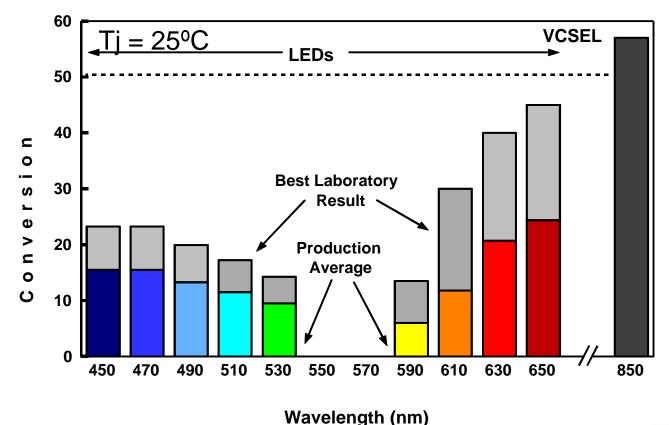

LUMILEDS

Copyright (c) Lumileds Lighting LLC Company

Combining Red, Green and Blue LEDs

Lumileds LCD Backlight!

- 20 Green, 10 Red, 10 Blue Luxeon's, ~ 1000 lumens!
- Today LED Solution has 140% Color Gamut and 120% CCFL power!



LUMILEDS

White from RGB LEDs

The Yellow-Green Gap!

• Eye Sensitivity Peaks right in the middle of the Yellow-Green GaP!

White Light from LEDs

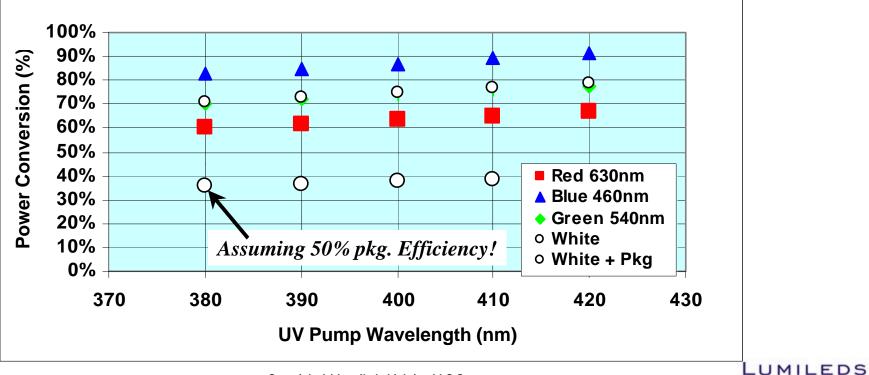
UV LED pumped RGB Phosphors

• Advantages:

- White point determined by phosphors ONLY! (i.e. tolerant to LED variation)
- Excellent color rendering possible!
- Theoretically "Simple to manufacture!" (Looks like TV or Fluorescent lamp except for pump is now UV LED rather than electrons.)
- Temperature stability of phosphors. (Can be great!)

Disadvantages

- Potential for damaging UV light leakage.
- Fundamental limits on efficiency due to phosphor conversion efficiency, Stokes shift, self absorption,...


• Challenges

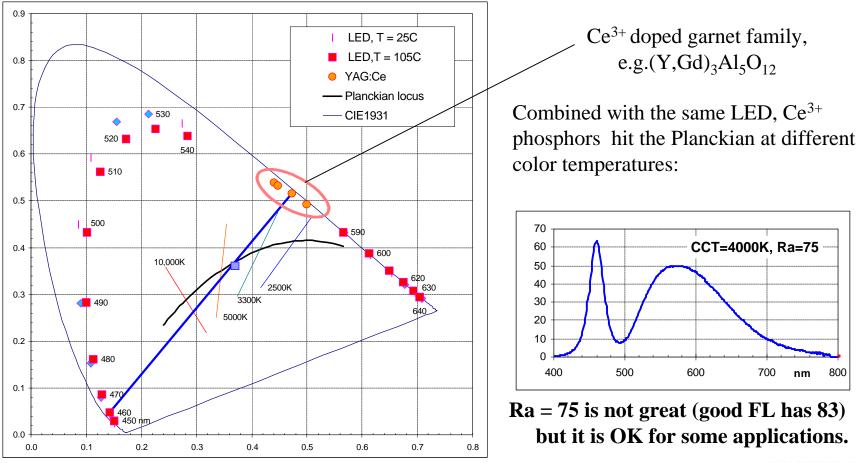
- None available yet!?
- Efficient Blue LED pumped phosphor not available yet?!
- Color uniformity with angle!
- Packaging must be robust to UV exposure.
- Temperature stability of phosphors. (Great phosphors not available in all colors!)

UV LED pumped RGB Phosphors

UV LED must be >2x Green LED WPE for same lm/W!

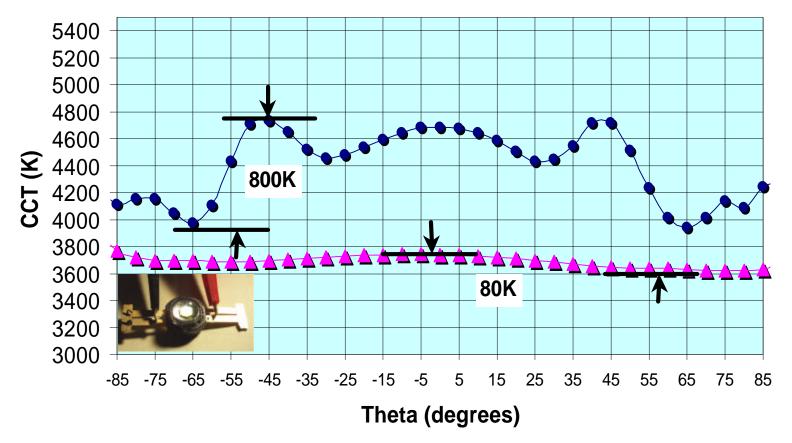
- Downshift in color causes fundamental energy loss.
- Scattering in phosphor + absorption in package (inc. phosphor) reduces extraction efficiency! Today's best package efficiency is ~50% for Blue + Yellow phosphor, UV + RGB phosphor likely to be even worse!

White Light from LEDs

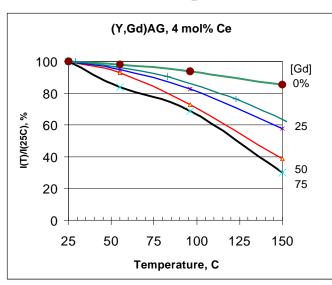

White from Blue LED + Phosphor(s)

• Advantages:

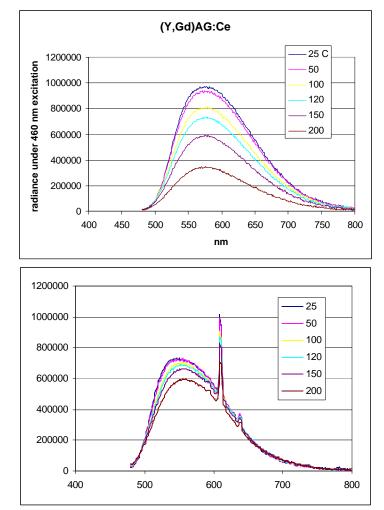
- Simple and single Yellow phosphor versions available today!
- Decent color rendering (Ra = 75 for Blue LED + Yellow Phosphor)
- Temperature stability of phosphors. (Can be great!)
- Disadvantages
 - Limits on efficiency due to phosphor conversion efficiency, Stokes shift, self absorption,...
 - Better color rendering (i.e. multi phosphor comes at cost of efficiency)
- Challenges
 - Temperature stability of phosphors. (Great phosphors not available in all colors)
 - Color uniformity vs. angle
 - Multi phosphor versions to improve color rendering


Today, PC LEDs are in the 20-30lm/W range!

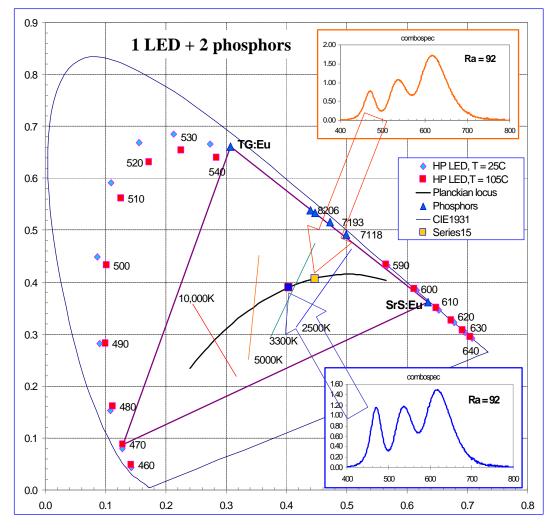
• Todays white LEDs are in the ~20-30lm/W range!



Color Uniformity can be good for PC White!


• CCT uniformity of 50-100K is sufficient for high quality illumination.

Progress on Temperature stability of Phosphors



novel phosphors with improved color specs emerge; in this case using a Ce³⁺ - Pr³⁺ transfer of excitation energy and yielding more temperature stable behavior

measured on powders

The 2-phosphor-converted LED – 2pcLED

Adding green and red to the blue of the LED opens a huge color gamut and allows for *de-luxe* white of any color temperature – our best choice

- SrGa₂S₄:Eu²⁺ green
- SrS:Eu²⁺ red

The dipole-allowed 5d-4f transitions of Ce³⁺ and Eu²⁺ are uniquely suited for color converters: high absorption, small Stoke's shift

White Light from LEDs

All three white LED technologies share <u>Three</u> challenges!

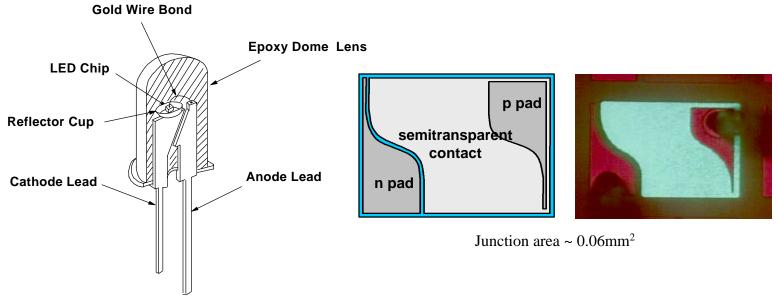
- **1** Maximize efficiency in lm/W
- 2 Maximize flux density in lm/package
- **3** And of coarse reduce cost \$/lm

475 lm/bulb 10 lm/W 0.01 \$/lm

145 lm/bulb 50 lm/W 0.02 \$/lm

90 lm/bulb

0.005 \$/lm


6 lm/W

Outline

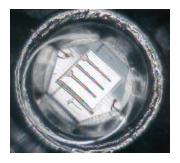
- Competition in the market for Illumination, Incandescent & Fluorescent Bulbs.
- LED Technology & metrics
- Options for making white light from LEDs
- Lumileds power white LED performance
- Some interesting demos

Limitations of conventional 5mm Indicator LED lamps

- Very high thermal resistance, >200°C/W,
- Epoxy limited to <<120°C due to thermal yellowing,
- Light utilization efficiency is low.

Luxeon™ approach

<u>Die design</u>


- Large area die for high power capability,
- Electrode design for low spreading resistance,
- Flip-chip configuration;
 - high extraction efficiency,
 - low thermal resistance,
 - ability to integrate electronics.

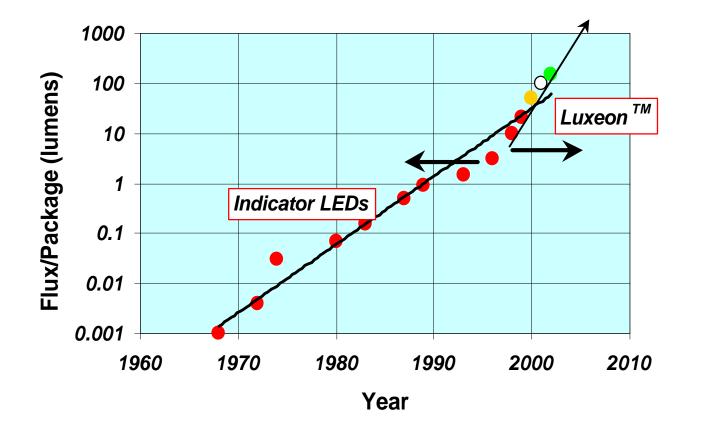
<u>Package design</u>

- Low thermal resistance package,
- Stable, soft gel inner encapsulant,
- Controlled radiation pattern and efficient optics.

System design

- Low thermal resistance board design,
- Efficient secondary optical elements.

Lumileds LuxeonTM Power LED Efficiency


• Leading the charge into Solid State Illumination

	Production Typical		R&D Demonstrations	
350mA If	lm/W	Im/LED	Im/W	Im/LED
Red	44	43	50	50
Red-Orange	55	54	65	65
Amber	36	36	44	44
Green	25	30	50	55
Blue	11	14	15	20
White	18	22	30	36

LED Technology

Haitz's Law for LED Flux

- LED Flux per package has doubled every 18-24 months for 30+ Years!!
- 1965 Moore's Law "# of Transistors/chip will double every 18-24 months!"

LUMILEDS

Lumileds LuxeonTM Series A & B LEDs

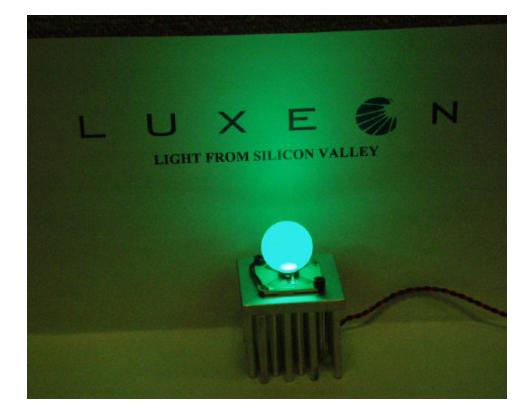
• First ever White LED > 100lm!! (100.2lm and 15lm/W to boot!!)

Lumileds 100 lumen Club!

• These are the only LEDs that approach "Illumination" flux!

Red	1000	105	February-01
Amber	700	110	December-99
Green	700	108	March-01
White	1870	100.2	July-01
White	1400	>110	1-Sep

What about Radiometric Power?!


- State of the art 400nm indicator LEDs provide 15mW of power.
- How much power can a Luxeon part generate? :-)

	If (mA)	W/LED	Date		
Deep Blue 430nm	Dan Steigerwald				
	Talk 44	45-19 08	:30 8/1/200	1	

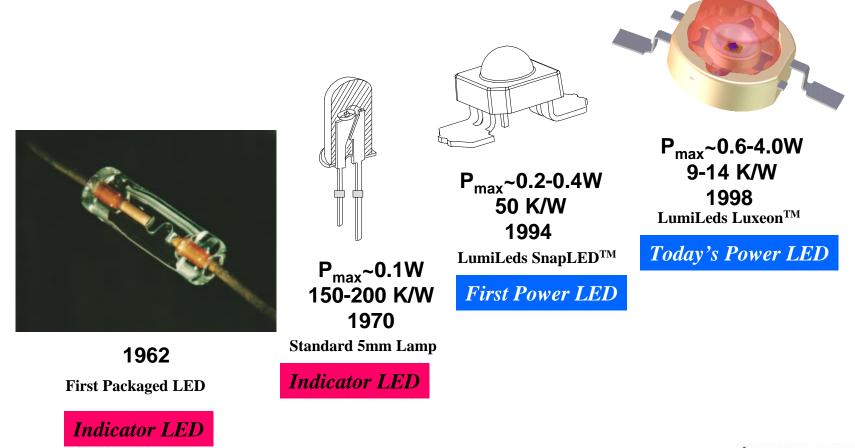
Lumileds LuxeonTM Series B Cyan LED

• Single Series B Cyan LED can replace an 80W bulb in an 8" traffic ball!

130 lm/bulb 30 lm/W 0.20? \$/lm

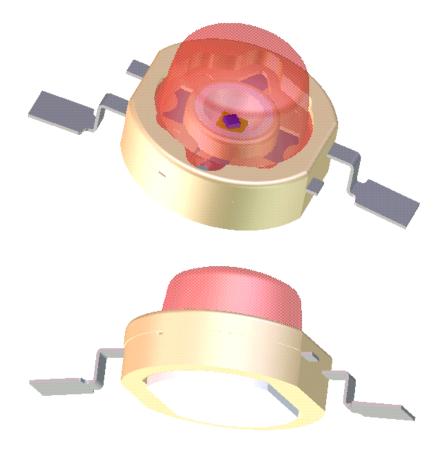
Lumileds LuxeonTM Ring

- Fixture design by Philips Lighting and Lumileds.
- 12 Luxeon's, ~240 lumens. Ring available Now!


LUMILEDS

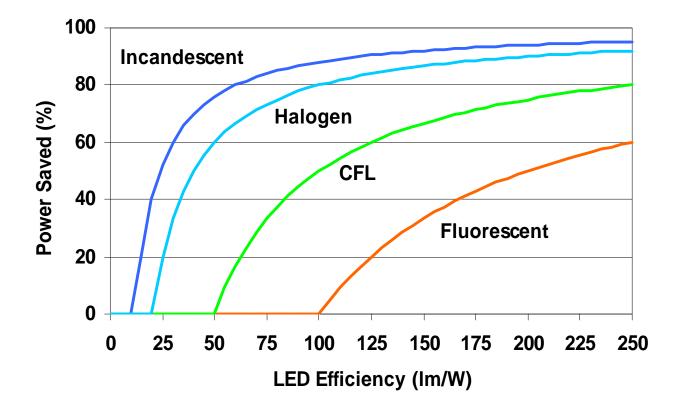
Outline

- Competition in the market for Illumination, Incandescent & Fluorescent Bulbs.
- LED Technology and metrics
- Comparison of options for making white LEDs
- Lumileds power white LED performance
- Some interesting demos


Evolution of LED Package Technology

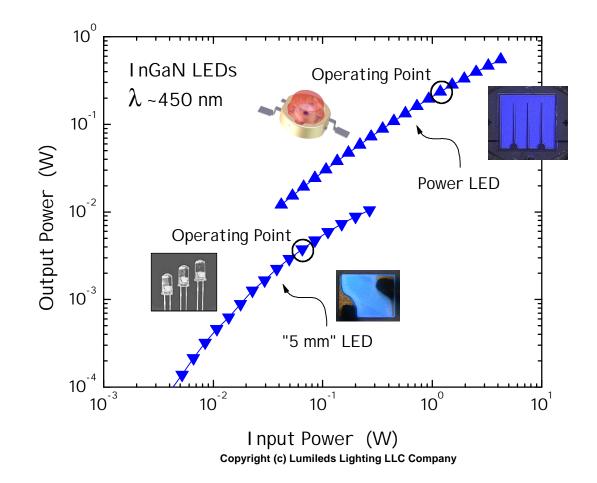
• Power LEDs can handle ~50x power of an Indicator LED!

Lumileds LuxeonTM Power LED


Packages designed to handle 1-5W!

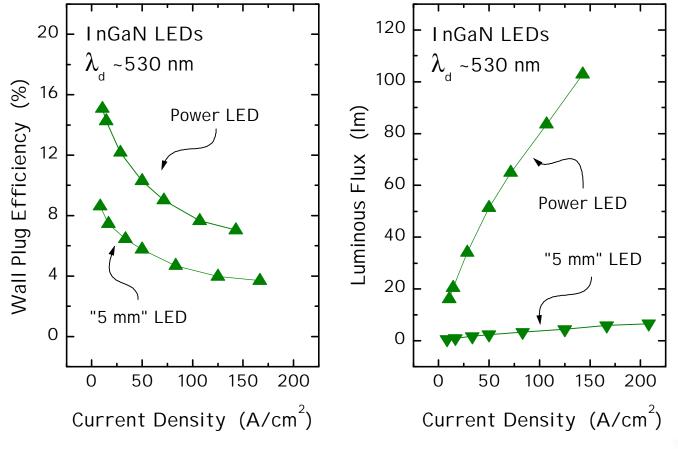
High-Power Package: Improved thermal properties Heat sink body with good thermal interface Soft gel inner encapsulant Including power AlInGaN or AlInGaP or Phosphor Converted AlInGaN Chip: θ_{jc}~ 12°C/W High optical efficiency > 95%

Potential Power Savings vs. Traditional Lighting


Todays white LEDs are in the ~20-30lm/W range, but still low flux!

LED Technology

Indicator LEDs vs. Power LEDs


• Indicator LEDs have output powers < ~50mW and Thermal resistances > 50K/W

Indicator LEDs vs. Power LuxeonTM LEDs!

• Luxeon's are designed for low thermal resistance & high current density!

